深层生成模型被广泛用于建模高维时间序列,例如视频动画,音频和气候数据。对于许多应用程序,已成功考虑了顺序变异自动编码器,许多变体模型依赖于离散的时间方法和经常性神经网络(RNN)。另一方面,连续时间方法最近获得了吸引力,尤其是在不规则采样的时间序列的背景下,它们可以比离散时间方法更好地处理数据。这样的类是高斯工艺变异自动编码器(GPVAE),其中VAE先验设置为高斯过程(GPS),允许通过潜在空间的内核功能和解释性明确编码归纳偏置。但是,GPVAE的主要限制是它继承了与GPS相同的立方计算成本。在这项工作中,我们利用了马尔可夫GP的等效离散状态空间表示形式,以通过Kalman过滤和平滑启用线性GP求解器。我们通过损坏和缺少框架任务显示出我们的方法的性能,尤其是在后者优于基于RNN的模型的后者。
translated by 谷歌翻译
风险的准确器官(OAR)分割对于减少治疗后并发症的放射治疗至关重要。达人指南推荐头部和颈部(H&N)区域的一套超过40桨的桨,然而,由于这项任务的可预测的禁止劳动力成本,大多数机构通过划定较小的桨子和忽视的少数,选择了大量简化的协议与其他桨相关的剂量分布。在这项工作中,我们提出了一种使用深度学习的新颖,自动化和高效的分层OAR分段(SOARS)系统,精确地描绘了一套全面的42 H&N OAR。 SOARS将42桨分层进入锚,中级和小型和硬质子类别,通过神经结构搜索(NAS)原则,专门为每个类别提供神经网络架构。我们在内在机构中使用176名培训患者建立了SOAR模型,并在六个不同的机构中独立评估了1327名外部患者。对于每个机构评估,它始终如一地表现出其他最先进的方法至少3-5%的骰子得分(在其他度量的相对误差减少36%)。更重要的是,广泛的多用户研究明显证明,98%的SOARE预测只需要非常轻微或没有直接临床验收的修订(节省90%的辐射脑神经工作负载),并且它们的分割和剂量准确度在于或小于帧 - 用户的变化。这些调查结果证实了H&N癌症放射疗法工作流OAR描绘过程的强烈临床适用性,提高了效率,全面性和质量。
translated by 谷歌翻译
贝叶斯正交(BQ)是一种解决贝叶斯方式中数值集成问题的方法,允许用户量化其对解决方案的不确定性。 BQ的标准方法基于Intains的高斯过程(GP)近似。结果,BQ本质上仅限于可以以有效的方式完成GP近似的情况,因此通常禁止非常高维或非平滑的目标功能。本文提出使用基于贝叶斯添加剂回归树(BART)前锋的新的贝叶斯数值集成算法来解决这个问题,我们调用Bart-Int。 BART Priors易于调整,适合不连续的功能。我们证明它们在顺序设计环境中,它们也会自然地借给自己,并且可以在各种设置中获得显式收敛速率。这种新方法的优点和缺点在包括Genz功能的一组基准测试和贝叶斯调查设计问题上突出显示。
translated by 谷歌翻译
随机过程提供了数学上优雅的方式模型复杂数据。从理论上讲,它们为可以编码广泛有趣的假设的功能类提供了灵活的先验。但是,实际上,难以通过优化或边缘化来有效推断,这一问题进一步加剧了大数据和高维输入空间。我们提出了一种新颖的变性自动编码器(VAE),称为先前的编码变量自动编码器($ \ pi $ vae)。 $ \ pi $ vae是有限的交换且Kolmogorov一致的,因此是一个连续的随机过程。我们使用$ \ pi $ vae学习功能类的低维嵌入。我们表明,我们的框架可以准确地学习表达功能类,例如高斯流程,也可以学习函数的属性以启用统计推断(例如log高斯过程的积分)。对于流行的任务,例如空间插值,$ \ pi $ vae在准确性和计算效率方面都达到了最先进的性能。也许最有用的是,我们证明了所学的低维独立分布的潜在空间表示提供了一种优雅,可扩展的方法,可以在概率编程语言(例如Stan)中对随机过程进行贝叶斯推断。
translated by 谷歌翻译
Research has shown that climate change creates warmer temperatures and drier conditions, leading to longer wildfire seasons and increased wildfire risks in the United States. These factors have in turn led to increases in the frequency, extent, and severity of wildfires in recent years. Given the danger posed by wildland fires to people, property, wildlife, and the environment, there is an urgency to provide tools for effective wildfire management. Early detection of wildfires is essential to minimizing potentially catastrophic destruction. In this paper, we present our work on integrating multiple data sources in SmokeyNet, a deep learning model using spatio-temporal information to detect smoke from wildland fires. Camera image data is integrated with weather sensor measurements and processed by SmokeyNet to create a multimodal wildland fire smoke detection system. We present our results comparing performance in terms of both accuracy and time-to-detection for multimodal data vs. a single data source. With a time-to-detection of only a few minutes, SmokeyNet can serve as an automated early notification system, providing a useful tool in the fight against destructive wildfires.
translated by 谷歌翻译
We propose AnyTOD, an end-to-end task-oriented dialog (TOD) system with zero-shot capability for unseen tasks. We view TOD as a program executed by a language model (LM), where program logic and ontology is provided by a designer in the form of a schema. To enable generalization onto unseen schemas and programs without prior training, AnyTOD adopts a neuro-symbolic approach. A neural LM keeps track of events that occur during a conversation, and a symbolic program implementing the dialog policy is executed to recommend next actions AnyTOD should take. This approach drastically reduces data annotation and model training requirements, addressing a long-standing challenge in TOD research: rapidly adapting a TOD system to unseen tasks and domains. We demonstrate state-of-the-art results on the STAR and ABCD benchmarks, as well as AnyTOD's strong zero-shot transfer capability in low-resource settings. In addition, we release STARv2, an updated version of the STAR dataset with richer data annotations, for benchmarking zero-shot end-to-end TOD models.
translated by 谷歌翻译
We consider the sequential decision-making problem of making proactive request assignment and rejection decisions for a profit-maximizing operator of an autonomous mobility on demand system. We formalize this problem as a Markov decision process and propose a novel combination of multi-agent Soft Actor-Critic and weighted bipartite matching to obtain an anticipative control policy. Thereby, we factorize the operator's otherwise intractable action space, but still obtain a globally coordinated decision. Experiments based on real-world taxi data show that our method outperforms state of the art benchmarks with respect to performance, stability, and computational tractability.
translated by 谷歌翻译
Modern machine learning requires system designers to specify aspects of the learning pipeline, such as losses, architectures, and optimizers. Meta-learning, or learning-to-learn, instead aims to learn those aspects, and promises to unlock greater capabilities with less manual effort. One particularly ambitious goal of meta-learning is to train general-purpose in-context learning algorithms from scratch, using only black-box models with minimal inductive bias. Such a model takes in training data, and produces test-set predictions across a wide range of problems, without any explicit definition of an inference model, training loss, or optimization algorithm. In this paper we show that Transformers and other black-box models can be meta-trained to act as general-purpose in-context learners. We characterize phase transitions between algorithms that generalize, algorithms that memorize, and algorithms that fail to meta-train at all, induced by changes in model size, number of tasks, and meta-optimization. We further show that the capabilities of meta-trained algorithms are bottlenecked by the accessible state size (memory) determining the next prediction, unlike standard models which are thought to be bottlenecked by parameter count. Finally, we propose practical interventions such as biasing the training distribution that improve the meta-training and meta-generalization of general-purpose learning algorithms.
translated by 谷歌翻译
The primary aim of this research was to find a model that best predicts which fallen angel bonds would either potentially rise up back to investment grade bonds and which ones would fall into bankruptcy. To implement the solution, we thought that the ideal method would be to create an optimal machine learning model that could predict bankruptcies. Among the many machine learning models out there we decided to pick four classification methods: logistic regression, KNN, SVM, and NN. We also utilized an automated methods of Google Cloud's machine learning. The results of our model comparisons showed that the models did not predict bankruptcies very well on the original data set with the exception of Google Cloud's machine learning having a high precision score. However, our over-sampled and feature selection data set did perform very well. This could likely be due to the model being over-fitted to match the narrative of the over-sampled data (as in, it does not accurately predict data outside of this data set quite well). Therefore, we were not able to create a model that we are confident that would predict bankruptcies. However, we were able to find value out of this project in two key ways. The first is that Google Cloud's machine learning model in every metric and in every data set either outperformed or performed on par with the other models. The second is that we found that utilizing feature selection did not reduce predictive power that much. This means that we can reduce the amount of data to collect for future experimentation regarding predicting bankruptcies.
translated by 谷歌翻译
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. We apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Moreover, we propose using Bayesian meta-learning algorithms that learn calibrated model priors to help satisfy the assumptions of the control design in challenging settings. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods and that the use of Bayesian meta-learning allows us to adapt to the test environments more rapidly.
translated by 谷歌翻译